Modulation of gene expression by α -tocopherol and α -tocopheryl phosphate in THP-1 monocytes. J. Zingg, R. Libinaki, C. Lai, M. Meydani, R. Gianello, E. Ogru, A. Azzi, *Free Radic. Biol. Med.*, **49**, 1989-2000 (2010).

The natural vitamin E analog α -tocopheryl phosphate (α TP) modulates atherosclerotic and inflammatory events more efficiently than the unphosphorylated α -tocopherol (α T). To investigate the molecular mechanisms involved, we have measured plasma levels of αTP and compared the cellular effects of αT and αTP in THP-1 monocytes. THP-1 cell proliferation is slightly increased by αT , whereas it is inhibited by αTP . CD36 surface expression is inhibited by αTP within hours without requiring transport of α TP into cells, suggesting that α TP may bind to CD36 and/or trigger its internalization. As assessed by gene expression microarrays, more genes are regulated by αTP than by αT . Among a set of confirmed genes, the expression of vascular endothelial growth factor is induced by aTP as a result of activating protein kinase B (PKB/Akt) and is associated with increased levels of reactive oxygen species (ROS). Increased Akt (Ser473) phosphorylation and induction of ROS by αTP occur in a wortmannin-sensitive manner, indicating the involvement of phosphatidylinositol kinases. The induction of Akt (Ser473) phosphorylation and ROS production by αTP can be attenuated by αT . It is concluded that αTP and αT influence cell proliferation, ROS production, and Akt (Ser473) phosphorylation in an antagonistic manner, most probably by modulating phosphatidylinositol kinases.